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Summary

Introduction The Wadden Sea and its coastal area is threatened by relative sea level rise
(RSLR). Particularly, the risk that intertidal �ats will drown and that the main land may
�ood increases with rising sea level and subsidence of the land and sea�oor. Dutch authorities
are investigating how sediment nourishments in the outer deltas of the Wadden Sea may help
avoid the drowning of intertidal �ats and reduce the risk of �oods. RSLR by itself and in
combination with nourishments will a�ect the morphology of the system, its hydrodynamics
and the sediment composition of the subtidal and intertidal sea�oor. These changes are expec-
ted to in�uence the distribution of benthos and shorebirds. This report investigates possible
responses of benthos communities on the basis of analysis of the distribution of intertidal
benthos and relationships with physical drivers. Expected responses of a number of shorebird
species are based on their diets and expected changes in benthos abundance and distribution.

Methods We use data from a large scale synoptic monitoring program (SIBES) to provide in-
sight into the spatial and temporal variability of sediment characteristics and macrozoobenthos
in the Dutch Wadden Sea. We use six physical predictor variables (i.e. exposure time, shear
stress, wave forcing, salinity, sediment, median grain size and mud fraction) to statistically
model the benthos community by means of correspondence analysis and constrained corres-
pondence analysis. We also develop species distribution models (SDMs) by means of regression
for 27 benthos species using �ve di�erent machine learning algorithms. The models are tuned
by means of cross validation with spatially distinct subsets. On the basis of the individual
model predictions we compute a consensus prediction (a weighted average of the predictions).
Partial dependence plots are constructed on the basis of the SDMs to provide insight into
species-speci�c responses to possible changes in the physical conditions at the intertidal �ats.
The partial dependence plots can be used to postulate expectations of the benthos and bird
communities in response to changing physical conditions.

In addition to the physical variables we also analyze the relationship between residual (based
on the machine learning consensus model) benthos biomass for the bivalve species Cerasto-
derma edule, Mya arenaria, Limecola balthica and Peringia ulvae and pelagic chlorophyll-a
concentrations.

Results We show that the intertidal �ats have become sandier in the period 2009-2015; par-
ticularly median grain size of the sediment has increased and the mud fraction has decreased.
We present the biomass, numeric abundance and site occupancy of the 27 intertidal benthos
species that are most important in terms of biomass. We show that the abundance (biomass,
number of specimens, occupancy) of benthos varies widely between years and over a broad
range of environmental conditions. Despite the yearly variability, the relationships between
occupancy and the environmental variables are constant between years. This observation jus-
ti�es the use of the average abundance per sampling site to analyze the relationships with the
environmental variables.

Correspondence analysis shows that there are gradients over which the species tend to co-occur
but that there are no distinct clusters of species. Constrained correspondence analysis shows
that the main axes explaining di�erences between benthos species are related to the sediment
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properties of the intertidal �ats and to exposure time, shear stress and wave forcing.

For most species, the SDMs are able to capture the main distribution patterns of the benthos
species. However, the consensus predictions, based on the �ve machine learning algorithms,
are systematically lower than the high biomass values (underprediction) and higher than the
low density values (overprediction). The level of spatial autocorrelation in the residuals is
signi�cantly lower than the spatial autocorrelation in the observations for the species where
the SDMs captured signal.

We found positive but weak relationships between chlorophyll-a concentrations and the dens-
ities of the residuals of the biomass of Cerastoderma edule and Limecola balthica but not
between Mya arenaria and Peringia ulvae. Within tidal basins, there were both positive and
negative relationships between biomass and chlorophyll-a.

The partial dependence plots show that three main prey species of red knot (i.e. Limecola

balthica, Cerastoderma edule, Peringia ulvae) show similar positive relationships with exposure
time. If the total area of intertidal �ats with high exposure time were to be reduced, the
important red knot prey species are expected to decline. Oystercatchers' main prey items
(Cerastoderma edule, Limecola balthica and Hediste diversicolor) are also expected to decrease
if exposure time decreases. Additionally, if the areas with relatively high shear stress expand,
the biomass of Hediste diversicolor is expected to be reduced and of Ensis leei it might increase.

Conclusion The �nding that most benthos species occur over broad ranges of environmental
conditions and that the temporal variabilities are relatively large suggests that the benthos
communities are quite irrepressible to moderate changes in the environmental variables on
short timescales. However, the dependence relationships suggest that if there are signi�cant
and permanent changes in the environmental variables, changes in the benthos community
are to be expected in the long term. The variability of the benthos densities under relatively
constant abiotic conditions (i.e. the conditions considered in this report) suggests that it will
take long time and many observations to detect systematic shifts in benthos distributions
related to changes in the physical variables. Models simulating the physical environment may
provide more detailed insight into possible future conditions. On the basis of such scenario's
more detailed prognoses about the benthos and shorebird communities can be developed which
can be used to support decision making with regards to sediment nourishments in a more
tangible manner.
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1 INTRODUCTION

1 Introduction

The Wadden Sea is the largest coherent system of intertidal �ats in the temperate zones of the
world. It is highly valued for its natural values and it provides important ecosystem services
such as protection against storm surges. The Wadden Sea and its hinterland is threatened by
relative sea level rise (RSLR) (Kabat et al., 2009). Particularly, under future rates of RSLR
it is unlikely that natural sedimentation rates are su�cient to compensate for RSLR. Author-
ities in the Netherlands are investigating how sediment nourishments can support sustainable
persistence of the Wadden Sea area and its ecosystem services.

The high primary productivity of the Wadden Sea and North Sea ecosystems support high
productivity and abundance of secondary producers such as macrozoobenthos and predators
such as shorebirds, �sh and crustaceans. The benthic macrofauna is composed of molluscs,
polychaetes, crustaceans and other groups (Compton et al., 2013a). Typical numerical dens-
ities are in the order of several thousands of individuals per m2 and biomass typically ranges
between 1 and 100 g ash-free dry weight per m2 (Heip et al., 1995; Compton et al., 2013a).
The spatial distribution of macrozoobenthos strongly depends on the properties of its envir-
onment such as inundation time and sediment grain size (e.g. Kraan et al., 2010; Compton
et al., 2013a). The temporal variability in biomass may span multiple orders of magnitude
which is mainly driven by episodic recruitment events (van der Meer et al., 2001).

Large-scale changes in the system, including anthropogenically induced changes due to for
example dredging and sediment nourishments, will a�ect the morphology, hydrodynamics and
the sediment properties of the sea�oor and thereby a�ect the distribution and community
composition of benthos. Although there is regularity in benthos distributions and community
composition, there is no theory that can be used to deduce quantitative forms of relationships
between environmental variables and the distributions of benthos species and communties.
Therefore, the modelling of benthos distributions is a highly empirical data-driven enterprise.
To analyze and interpret system changes for purposes of predictive modelling, long-term large
scale data about system changes and the distribution of benthos are essential (Herman et al.,
1999).

Changing sea levels in isolation or in combination with sediment nourishments will cause the
system morphology and local physical conditions to change. To identify the areas where speci�c
species and communities are likely to establish, species distribution models (SDMs) can be
used (Elith & Leathwick, 2009; Guisan et al., 2013; Folmer et al., 2016). SDMs are based on
statistical relationships between the abundance of organisms and environmental conditions.
The quality of the predictor variables, in the sense that they adequately represent the relevant
physical conditions, is crucial to the development of useful SDMs. Important abiotic predictor
variables for benthos include the hydrodynamic conditions such as inundation time, shear
stress and wave forcing, the sea�oor sediment properties and salinity.

In this report we 1. provide detailed insight into the spatial and temporal variability of the
sediment properties and macrozoobenthos in the Dutch Wadden Sea (Fig. 2) over the years
2008-2013 on the basis of a large scale synoptic monitoring program (SIBES); 2. use physical
predictor variables to model the community distributions by means of correspondence analysis
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1 INTRODUCTION

and constrained correspondence analysis; 4. develop (consensus) species distribtution models
by means of machine learning algorithms and analyse the residuals for spatial autocorrelation;
5. analyze the relationships between the benthos biomass residuals and chlorophyll-a con-
centrations; 6. construct partial dependence plots to develop insight into the response of the
benthos and bird communities under possible changing environmental conditions; 7. provide
recommendations for management and suggestions for further research.
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2 METHODS

2 Methods

2.1 Study area

The Wadden Sea is located in the south-eastern coastal zone of the North Sea and borders
Denmark, Germany and the Netherlands. It was designated an UNESCO World Heritage site
because of its `universally outstanding natural values'. It consists of intertidal �ats, shallow
subtidal �ats, drainage gullies and deeper inlets and channels. Tidal currents and exposure to
waves strongly di�er between regions due to di�erences in tidal range, geomorphology, fetch
and the occurrence of barrier islands. The intertidal �ats consist of sand mixed with �ne-
grained muddy sediments; the fractions of �ne-grained particles increase towards the shores.

Figure 1: Exposed intertidal mud�at in the Wadden Sea (photo: Roos Kentie).

2.2 Field sampling and laboratory analysis

Within the Synoptic Intertidal Benthic Survey (SIBES), sediment and benthos was sampled
throughout the entire intertidal Dutch Wadden Sea (Fig. 2). Sampling was performed over
500 m grids. Randomly located sites within the grid were also sampled for the improvement
of the �ne-scale accuracy of spatial interpolations (Bijleveld et al., 2012). Sampling sites were
visited by foot during low tide and by boat during high tide.
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Figure 2: Sites sampled in the Dutch Wadden Sea within the SIBES monitoring programme between
2008 and 2013. The boundaries of the tidal basins are included. The tidal basins or sets of tidal basins
used to split the data for spatial cross-validation are indicated by di�erent colours (see Section 2.5).
In 2008 the Ems and Dollard in the eastern Wadden Sea were not sampled.

2.2.1 Sediment

Sediment samples were taken at 500 m grid intervals and at the random sites in the period
2009-20151and at 1 km grid intervals in 2008. Sediment samples were taken from the surface
of the intertidal �ats to a depth of 4 cm and then frozen at -20 °C. Sediment samples were
freeze-dried for up to 96 h and then homogenized with a mortar and pestle. Homogenized
samples were weighed and placed into 13 ml polypropylene auto-sampler tubes with degassed
reversed osmosis water. Grain size distributions were measured by means of a particle size
analyzer which uses laser di�raction and Polarization Intensity Di�erential Scattering techno-
logy (Coulter LS 13 320, optical module `grey', grain sizes from 0.04 to 2000 μm in 126 size
classes). Mud fraction of the sample is de�ned as the volume fraction between 0.04 and 63.00
μm. For further details concerning sediment analysis we refer to Compton et al. (2013b).

2.2.2 Benthos

At the sites sampled by boat, two cores were taken to a depth of approximately 25 cm (total
area of 0.0173 m2). At the sites sampled by foot, a core of 0.0177 m2 was taken. Samples were
sieved in the �eld on a 1 mm round mesh. Bivalves were separated from the other macrofaunal
species and stored frozen until laboratory analysis. The remaining species were preserved using
a 4% formaldehyde solution.

Molluscs were identi�ed to species level. Other organisms (mainly crustaceans, polychaetes,
oligochaetes) were identi�ed to the �nest taxonomic level possible. Polychaetes and crusta-
ceans were identi�ed to either genus or species level; oligochaetes were identi�ed to class level.
For further details concerning species identi�cation we refer to Compton et al. (2013b).

1the reason that sediment data until 2015 are included and benthos until 2013 is that sediment is faster to
process.
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After identi�cation, the lengths of all molluscs, crabs and shrimp were measured to the nearest
0.1 mm and the biomasses were determined to the nearest 0.1 mg. Some polychaete species
are divided into large and small size classes. In the cases that there were multiple individuals
of the same mollusc species with shell length less than 8 mm in one sample, the total weight
of the small, same-sized individuals was determined. The �esh of molluscs with shell length
larger than 8 mm was separated from the shell and dried for 2 to 3 days at 60 °C in a ventilated
stove. After weighing the dried �esh to the nearest 0.1 mg, the �esh was incinerated at 560
°C for 5 h. After incineration, the weights of the ashes were measured again (to the nearest
0.1 mg). In this way species and length-speci�c values for ash-free dry mass (AFDM) were
obtained.

2.3 Predictor variables

Hydrodynamics with GETM The hydrodynamic predictors were developed within the
PACE project which had the goal of accurately modelling the physics and salinity conditions
of the entire Wadden Sea. In the PACE project the hydrodynamics were simulated by means
of the General Estuarine Transport Model (GETM, Burchard & Bolding, 2002). GETM
is designed for coastal ocean simulations with drying and �ooding of intertidal �ats. The
numerical set-up - based on a 200 x 200 m topography - is the end member of a hierarchy of
four nested models covering the North Atlantic, the North Sea, and the southern North Sea
(Gräwe et al., 2015). Simulations were run for the period 2008�2011; the year 2008 was not
included in the computation of the summary statistics used here since it was considered as
spin up for the hydrodynamics. Further modelling details and postprocessing are described in
(Gräwe et al., 2016; Folmer et al., 2016).

The model output was used to obtain estimates of mean exposure time1 (expt , i.e. the mean
fraction of time that the seabed is exposed to the air) and mean shear stress (shear , Nm−2)
due to currents and mean salinity (sal , psu) at the sea �oor over the period 2009�2011 (Fig.
3).

Wave forcing Donker (2015) simulated wave forcing in the Dutch Wadden Sea by means of
the wave model SWAN (version 40.91AB). SWAN is a 2D horizontal wave model which solves
the wave action balance in the horizontal domain. In SWAN, waves are generated by wind
and energy is transfered through wave-wave interactions. Waves dissipate energy via depth-
induced wave breaking; white capping and bottom friction is included in the model. The
model is unable to model �ow velocities. For further description we refer to Donker (2015)
and references therein.

1Peter Herman suggested to make use of the most accurate depth measurements (vaklodingen) to model the
densities of benthos. We investigated the relationship between depth and inundation time to judge whether
this might lead to more accurate modelling of benthos distributions. The correlation between the two variables
is too low to justify the use of depth as a predictor variable. Results are presented in Appendix A. The
possibility to apply the inundation model of Janine Nauw and others has not been followed up.
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Donker (2015) used SWAN to determine the spatial distribution of wave forcing, in terms
of the root mean squared near-bed wave orbital velocity amplitude for 1480 representative
environmental scenarios. Particularly, Donker used combinations of �ve windspeeds (4, 8,
12, 16 and 20 ms=1), eight wind directions (N, NE, E, SE, S, SW, W, NW ) and 37 sea
levels (from -0.9 to 2.7 m with step size 0.1 m around mean sea level). Obtained model results
were, subsequently, related to frequency of occurrence of the environmental scenarios to obtain
statistically representative estimates of wave exposure for the entire Dutch Wadden Sea for
the period 2006-2013.

In this report we brie�y considered the yearly variability of the mean, median, 90th and 95th

percentile orbital velocity values for all locations where benthos was sampled. The yearly
variations in the mean, median, 90th and 95th percentile values are low compared to the
spatial variations (Appendix B shows scatterplots of the median and 95th percentiles of wave
forcing between years). Furthermore, the mean, median, 90th and 95th percentile values are
strongly correlated. Therefore we used the averages of the 95th percentile values over the years
2006-2013 in the remainder of the report (Fig. 3); we label the variable wave (ms−1).

Sediment We used mud fraction (mud) and median grain size (mgs, µm) obtained from
the sediment samples described in Section 2.2.1 as predictor variables for the benthos com-
munity. We used the average values of mud and mgs per location over the years 2008-2013 as
predictors for the benthos community (for which the average densities and biomasses over the
period are also used). Section 3.1 shows that the yearly di�erences in sediment composition
are very small in comparison with the spatial di�erences which justi�es the use of the average
over the period 2008-2013.
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Figure 3: Physical predictor variables used for modelling benthos distributions. Mean exposure time,
mean shear stress and mean salinity are products from the PACE project; data provided by Ulf Gräwe
from the Leibniz-Institute for Baltic Sea Research (IOW). Near-bed wave forcing data provided by J.
Donker (see Donker, 2015), University of Utrecht. Sediment median grain size and mud fraction are
from the NIOZ SIBES program.
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2.4 Statistical analysis

2.4.1 Imputation

For a number of cases of the benthos data length or biomass measurements were missing (Fig.
24). We used the R package 'mice' (Buuren & Groothuis-Oudshoorn, 2011) for imputing
missing values with plausible data values. Plausible values are drawn from distributions which
are speci�cally designed for each missing data point.

For the bivalve species, mudsnail (Peringia ulvae), and shore crab (Carcinus maenas) there are
strong linear relationships between lengths and the cubic root of biomass but the relationships
vary between years. Therefore imputation was done for each species and year separately. For
the polychaetes length measurements are lacking although for some species two size classes
are used. Imputation was done on the basis of this information. Figures 25 and 26 show the
density distributions of the original biomass and the resulting imputations.

2.4.2 Sediment dynamics

We analysed the spatio-temporal dynamics of mgs and mud by means of mixed-e�ects models.
To obtain insight into where the changes occured the analyses were done on a pixel-by-pixel
basis. As median grain size appeared normally distributed we used a linear mixed-e�ects
model. The location (i.e. pixel id) is taken as a random e�ect. Because mud is expressed as a
fraction of the total volume of the sample we logit-transformed (i.e. logit(y) = log( y

1−y )) mud
and estimated the yearly change per pixel with a linear mixed-e�ects model. In the entire
sediment dataset from the period 2009-2015 there were 813 cases (out of 26674) for which
mud was 0.00. Therefore, we added 0.001 to all measurements to avoid having 0 values in
logit-transformation. We centered the variable year by subtracting 2012 so that the intercepts
of the invididual random e�ects correspond to the mean mgs and mean mud fraction. We
used the R package 'lme4' (Bates et al., 2012) for estimating the mixed-e�ects models.

2.4.3 Multivariate analysis of predictors and benthos community

To develop insight into the the distribution of the benthos community and the relationships
with the abiotic predictor variables we make use of a number of multivariate techniques. In
these analyses we only consider the values of the predictor variables at the benthos sampling
sites.

We used principal component analysis (PCA) to analyse the covariance structure in the en-
vironmental predictor variables set. PCA uses a linear transformation of the variables into
a lower dimensional space which retains maximal amount of information about the variables
(Venables & Ripley, 2002). We present biplots to show component loadings of the variables
and component scores of the benthos sampling sites simultaneously.

We used correspondence analysis to analyse the benthos communities. Correspondence ana-
lysis is similar to PCA but it is based on chi-squared distance rather than on variance (Legendre

12



2 METHODS

& Legendre, 1998) 1. The chi-square distance transformation reduces the values of abundant
species more than that of rare species. Because the numeric density (number of specimens
per meter squared) of the benthos is variable and strongly in�uenced by several high values
(particularly Ensis leei in 2011) the data were square-root transformed prior correspondence
analysis. In a biplot of a correspondence analysis the species scores are the weighted averages
of site scores.

Constrained correspondence analysis (CCA) is a form of direct comparison analysis where
the ordination vectors are maximally related to environmental predictor variables (Legendre
& Legendre, 1998). CCA is also known as canonical correspondence analysis. CCA displays
the variation in the data that can be explained by the used constraints. We used CCA,
implemented in the R-package 'vegan' (Oksanen et al., 2007), to describe how the variation
in the benthos community may be explained by the variables expt, shear, wave, sal, mud and
mgs.

2.5 Species distribution modelling

Because the benthos data are overdispersed, show strong zero-in�ation and are spatially auto-
correlated it is hard to develop parametric regression models. Lyashevska et al. (2016), how-
ever, show an application of modelling the density of Limecola balthica in the Dutch Wadden
Sea by means of a geostatistical mixture-model where Bernoulli processes and Poisson processes
are combined. The method of Lyashevska et al. (2016) requires intensive MCMC simulation
which would be impractical for the current study.

In this paper we develop models for the spatial distributions of the average benthos biomass
over the period 2009-20132 by means of "distribution free" machine learning algorithms. When
species distribution models (SDM) are developed to predict distributions of species under new
conditions machine learning algorithms are often preferred due to their predictive accuracy
(Barry & Elith, 2006; Hastie et al., 2009; McCue et al., 2014; Folmer et al., 2016). Another
practical advantage of using machine learning algorithms is that they are distribution free
and require little manual tuning (Kuhn, 2014). An important goal of this research project
is the assessment of the relationships between benthos biomass and the predictor variables.
Adequate assessment of these relationships requires general and robust models that are able
to predict benthos distributions under new conditions. Therefore, we tuned the SDMs on the
basis of their predictive capacity using non-random, spatial cross-validation. In a similar vein
to Wenger & Olden (2012); Folmer et al. (2016), we split the data into regionally distinct
subsets which are more independent than random subsets. We used the borders of the tidal
basins of the Dutch Wadden Sea to delineate the regions; some of the smaller neighbouring
tidal basins were combined to have more equal number of data points per group. The spatial
cross-validation groups are presented in Fig. 2. An advantage of tuning models in this way
is that the models are guarded against over�tting and possible bias which may result from

1note that other distance measures are possible.
22008 is excluded in these analyses because in that year the Ems-Dollard estuary was not sampled.
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spatial autocorrelation (Wenger & Olden, 2012; Folmer et al., 2016). We model the average
biomass of 27 benthos species with the predictor variables described in Section 2.3.

2.5.1 Model tuning procedure

The following model tuning procedure was used to �nd the best models and predictions for
the biomass of each of the benthos species separately.

1. The area was split into six cross-validation groups (Fig. 2).

2. Cross-validation: one of the data subsets was held-out and each of the �ve modelling
frameworks (Section 2.5.3) were �tted to the remaining dataset by means of a grid-search
over the algorithm speci�c hyperparameters. For each parameter combination and for
each fold the performance metric RMSE (root mean squared error) was computed.

3. For each of the modeling frameworks, the mean RMSE of each hyper-parameter com-
bination is computed over the six folds.

4. The parameter combination with the lowest mean RMSE was considered the best para-
meterization for the model.

5. The models were then �tted to the entire data set.

The procedure resulted in �ve sets of predictions which were used to compute the consensus
predictions. For each data point, the consensus prediction was computed by taking the average
of the �ve predicted values, Smi, weighted by the inverse of the individual variances, i.e.

Si =

∑m=5

m=1
wmiSmi∑m=5

m=1
wmi

and wmi = σ−2
mi .

The residuals were analysed for spatial pattern by means of correlograms which describe the
spatial autocorrelation by spatial lags.

2.5.2 Partial dependence plots

We analysed the nature of the relationships between response variables and predictor variables
by means of partial dependence plots. Partial dependence plots show the marginal e�ect of a
response variable after accounting for the average e�ects of the other variables on the response
(Hastie et al., 2009; Zhao & Hastie, 2017). We used the models obtained via the procedure
described in Section 2.5.1.

In the following sections follows a brief description of the modelling frameworks.
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2.5.3 Machine Learning Frameworks

Generalized Additive Models with Splines Generalized Additive Models with Splines
(GAM) is a modelling approach that combines generalized linear models and additive models
to account for nonlinear relationships (Wood, 2006; Hastie et al., 2009). In a GAM, the linear
predictor is given by a sum of smooth functions of the covariates. GAM is popular because
of the �exibility to capture nonlinear e�ects and is therefore commonly used in ecology. We
used the R package mgcv (Wood, 2015). We used the identity link function and smoothing
splines for each predictor. The smoothing parameters were selected by Generalized Cross Val-
idation (GCV) (Wood, 2015). We used the option to penalize terms to zero so that smoothing
parameter estimation - which is part of �tting - can completely remove terms from the model
(Marra & Wood, 2011).

Multivariate Adaptive Regression Splines Multivariate Adaptive Regression Splines
(MARS) is a regression technique that works similar to regression trees but uses piecewise
linear basis functions instead of step functions (Friedman, 1991; Hastie et al., 2009; Kuhn
& Johnson, 2013). The basis functions are de�ned in pairs where a knot sets the cut point
along the predictor variable. The basis function has zero value on one side of the knot and is
non-zero on the other side. The basis functions are added to a basic linear regression model
and estimated coe�cients determine the slopes (within the range of the basis function where
it is greater than 0). The algorithm progresses in a forward stepwise fashion where knots
with corresponding pairs of basis functions are selected on the basis of the largest decrease
in prediction error. Terms (i.e. basis functions) are added to the regression model until a
stopping point is reached. At this point the model contains many terms and it over�ts the
data. Therefore a deletion process of terms (pruning) is initiated to reduce model complexity
and to improve parsimoniousness. Terms are pruned in order of increasing error reduction.
The error metric is the generalized cross validation (GCV) statistic which approximates leave-
one-out cross-validation (Kuhn & Johnson, 2013). The degree of the features that are added
to the model and number of terms to prune are hyperparameters to be tuned. The degree was
set to 1 and 2 and the number of terms to prune was set to 2,3,...,20. We used the R package
�earth� for MARS (Milborrow, 2015).

Random Forest The random forest (RF) algorithm (Breiman, 2001; Prasad et al., 2006;
Cutler et al., 2007; Hastie et al., 2009) is suitable for SDM because of its ability to model
non-linear relationships and complex interactions among predictor variables. Also in the case
of multicollinearity, prediction accuracy is usually high which is crucial to the development of
reliable models. RF is an ensemble learning method in that it �ts many regression trees and
then combines the predictions from the trees (Cutler et al., 2007; Hastie et al., 2009). Each
tree in a RF is generated by a bootstrap sample of about 67% of the overall sample; about
33% of the sample is used for validation (i.e. the out-of-bag [OOB] sample). At each split
point, a �xed number of variables (labeled mtry) from all predictors is selected randomly. Per
split point the best variable is chosen from the random subset of variables. We followed the
recommendation by Hastie et al. (2009) to treat mtry as a tuning hyperparameter which took
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all integer values in the range between 1 and 6 (i.e. the number of predictor variables: expt,
shear, sal, wave, mgs, mud). The optimal mtry was found by minimizing the prediction error
as described above. The number of trees was set on the basis of OOB error convergence. Plots
of error against the number of trees suggested that 500 trees was su�cient to stabilize the
errors. We used the R package �RandomForest� (Liaw & Wiener, 2002).

An advantage of �tting many regression trees is the possibility to determine the prediction
power of variables (Cutler et al., 2007; Hastie et al., 2009). First, the prediction accuracy
(mean squared error, MSE) is calculated on the basis of OOB samples. Then, in the OOB
sample, the values of the predictor variable are randomly permuted and prediction accuracy
is computed again. If a variable is important, then permutation has a negative impact on
prediction accuracy. The di�erence between the two accuracies, averaged over all trees, and
normalized by the standard deviation of the di�erences is the increased mean square error
(%incMSE). Another measure of the importance of a variable is the increase in node purity
which is computed as the reduction in the residual sum of squares (RSS) before and after the
split. The node purity is computed by averaging the RSS's over all trees.

Gradient Boosting Machines We also used Gradient Boosting Machines (GBM) (Elith
et al., 2008; Hastie et al., 2009; Kuhn & Johnson, 2013) implemented in the R package �gbm�
(Ridgeway, 2013). GBM is also known as Boosted Regression Trees. GBM combines many
weak regression trees (by restricting tree depth) in a successive fashion (i.e. boosting) to
optimize predictive performance. In GBM, regression trees are sequentially �tted to residuals
to minimize the loss function (here the sum of the squared residuals) after which the new tree
is added to the model; hence � in contrast to RF � new trees depend on past trees. Boosting
may easily lead to over�tting of the data. To avoid over�tting, the contribution of each added
tree to the predicted value of the iteration in the step before, is shrunk by the learning rate
λ. Shrinkage can be thought of as a penalty for complexity. The disadvantage of shrinkage is
that computation time increases with decreasing λ. However, regularization with small values
of λ works best to attain optimal models (Elith et al., 2008). Tree depth, learning rate and
number of trees are the only hyperparameters to be tuned. Tree depth was set to the values
1 - 8; λ: 0.01, 0.02, ..., 0.1; number of trees: 100, 150, . . . . 1000. GBM models were �tted to
all combinations of hyperparameters and the best model was selected on the basis of RMSE
of the test sets.

Support Vector Machines Support Vector Machines (SVM) were originally developed
for solving classi�cation problems (Vapnik, 1998) but they have been extended to regression
problems with a quantitative response (Hastie et al., 2009; Kuhn & Johnson, 2013). SVMs
are popular because they require little tuning, standard algorithms can be used for optimiza-
tion and they perform well with high dimensional data. Furthermore, SVMs can be applied
to simple linear and very complex nonlinear functions by using kernels to map the original
inseparable low dimensional feature space to a higher dimension, which is separable. SVMs
have been applied in a wide range of scienti�c domains including ecology, notably species dis-
tribution modelling (Drake et al., 2006). For detailed and technical explanations of support
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vector regression we refer to Smola & Schölkopf (2004); Hastie et al. (2009); Kuhn & Johnson
(2013).

The function ksvm in the R package �kernlab� (Karatzoglou et al., 2004) was used for SVM
regression modelling. We selected the radial basis function kernel because it is very e�ective
and requires only one hyperparameter (σv), which is automatically estimated by the function
kvsm (Kuhn & Johnson, 2013). The C parameter controls the cost of errors and thus the
�exibility of the model; ε controls the width of the insensitive error band. We followed the
suggestion by Kuhn & Johnson (2013) to �x ε and to tune over the hyperparameter C because
of the relationship between C and ε. C was set to the values 2=2, 2=1, ... , 211.

2.6 Nutrients and primary production

The species distribution models based on physical predictor variables did not fully capture
the spatial patterns of the benthos distributions. We attempted to explain the unexplained
variability by means of primary productivity. To analyse the impact of productivity on the
macrozoobenthos community we compiled nutrient and chlorophyll-a data from various loc-
ations in the Wadden Sea (Figs. 4a and 4b). We analysed the relationships between the
SDM residuals and the chlorophyll-a concentrations; nutrient trends are included for reasons
of completeness.

2.6.1 Data

Chlorophyll-a and nutrient concentrations in the Wadden Sea were monitored by the Dutch
Ministry of Transport and Public Works at a number of locations (Fig. 4a). Data were ob-
tained from the Deltares opendap server which mirrors the waterbase water quality monitoring
database1. The unit for for chlorophyll-a concentration is μg/l and for nutrient concentrations
it is μmol/l.

The purpose of the data handling described below is to obtain estimates of winter nutrient
and summer chlorophyll-a concentrations at the monitoring stations and to link them to the
benthos sampling sites. To compute summer chlorophyll-a concentrations we used measure-
ments from the months April until August. The winter nutrient concentrations are based on
the months December until March. The nutrient concentrations for the month December are
considered to be part of the winter of the year after. For example, when chlorophyll-a concen-
trations of 2010 are matched up with the nutrients, the concentrations of December 2009 and
January until March of 2010 are used.

The frequency at which monitoring occured di�ered between periods and stations which led to
temporally irregular timeseries. This may result in di�erences in the reliability of computed
averages. Two methods were used to overcome this di�culty which helps to make robust

1opendap: http://opendap.deltares.nl/thredds/�leServer/opendap/rijkswaterstaat/waterbase/
waterbase: http://www.watergegevens.rws.nl
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comparisons between stations. The �rst method comprised of computing average yearly con-
centrations only when there were more than two measurements within the relevant season
(summer concentrations of chlorophyll-a and winter concentrations of nutrients). Although
this improves the reliability of the computed averages, the method is not perfect because
within seasons the concentrations may also strongly di�er. For instance, di�erences in estim-
ates of chlorophyll-a concentrations can result from the inclusion or exclusion of measurements
during phytoplankton blooms (which are easy to miss due to their short durations). The
second method aims to overcome this possible bias by means of interpolation of the timeser-
ies. Particularly, the temporally irregular measurements were used to compute regular daily
concentrations by means of Stineman interpolation which is a robust method that prevents
overshooting (Stineman, 1980). Figure 4b presents the estimates of yearly averages by means
of both methods. It shows that the way in which the yearly concentrations are measured
is not strongly in�uenced by the chosen method (x for using the raw data; y.stine for the
interpolated data).

To analyse the relationships between yearly benthos biomass and chlorophyll-a concentration
we assumed that the benthos biomass in a particular year was in�uenced by the chlorophyll-a
concentration in that year and the two preceding years. The chlorophyll-a concentrations at
benthos sampling sites i were computed on the basis of the average concentrations measured
at the chlorophyll-a sampling stations j. The benthos sites and pelagic stations were linked on

the basis of the weighted inverse squared distance between them, i.e. Chlai =

∑j=9

j=1
d−2
ij ·Chlaj∑j=9

j=1
d−2
ij

.

2.7 Shorebird distributions and diets

The consequences of changing environmental conditions for three shorebird species were in-
vestigated using the partial dependence plots for their benthos prey species. We selected three
shorebird species which forage on a mix of bivalves and polychaetes (for a review see Folmer
et al., 2010). We analyze the response of the prey species that constitute an important portion
of the diet and are abundant and accurately monitored in the SIBES program in the Wadden
Sea.

� Red knot (Calidris canutus): Limecola balthica, Cerastoderma edule, Peringia ulvae

� Oystercatcher (Haematopus ostralegus): Cerastoderma edule, Limecola balthica, Ensis

leei, Hediste diversicolor

� Bar-tailed godwit (Limosa lapponica): Hediste diversicolor, Nephtys hombergii, Scoloplos
armiger, Arenicola marina, Lanice conchilega, Limecola balthica, Carcinus maenas
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(a) Map of the Dutch Wadden Sea with the stations where chlorophyll-a and nutrient concentrations are mon-
itored. The black lines denote the boundaries of the ten tidal basins.

(b) Trends in winter nutrients and summer chlorophyll-a concentrations.

Figure 4: Water quality sampling stations and trends in the Dutch Wadden Sea.
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3 Results

3.1 Sediment dynamics

Maps, cumulative distributions and boxplots of yearlymud andmgs by tidal basin are provided
in Appendix C (Figures 21, 22 and 23). The �xed e�ects of the regression models are presen-
ted in Table 1. Because mud was logit-transformed, the regression coe�cients represent the
average intercept and yearly changes on logit scale.

The average yearly increase in mgs is 0.89 µm. The yearly change in mud is in line with
the change in mgs; the average mud fraction of the tidal �ats has reduced with an average of
0.24% per year1.

Table 1: Fixed e�ects of the linear mixed-e�ects models explaining the variance in median grain size
and mud content.

mgs mud
Constant 149.004∗∗∗ −2.312∗∗∗

(0.728) (0.022)
dyear 0.891∗∗∗ −0.030∗∗∗

(0.068) (0.003)
Observations 18,708 18,708
Log Likelihood −81,355.940 −21,780.090

Notes:
∗∗∗Signi�cant at the 1 percent level.
∗∗Signi�cant at the 5 percent level.
∗Signi�cant at the 10 percent level.

Figure 5 presents maps with the coe�cients of the random e�ects of the mixed models. The top
row shows the intercepts for each pixel (because the variable year was centered, the intercept
corresponds to the mean mgs). The bottom row shows the yearly change in mgs and mud.

The average change in mgs ranges between -10 and 15 μm per year and the average yearly in
mud fraction ranges between -0.04 and 0.02 (-4% and 2%). The spatial changes in mgs and
mud are in line with each other in that the largest increases in mgs and the largest decreases
of mud tend to occur near the main land. The scatterplots in Figure 6 of the yearly changes
against the mean mgs and mud in �gure illustrate this phenomenon in more detail.

1logit−1(−2.312− 0.030)− logit−1(−2.312) = −0.0024 = −0.24%
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Figure 5: Maps with the coe�cients of the random e�ects of the mixed models for median grain size
(mgs) and mud fraction. The intercept and yearly change in mud fraction were back-transformed by
means of the inverse logit.

Figure 6: Scatterplots of the yearly changes against the intercepts of mgs and mud. The data points
are the random e�ects of the mixed models.
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3.2 Benthos - general patterns

This section describes some general patterns of the benthos in the Wadden Sea. The species
in Table 3, which includes the abreviated species codes, are analysed in this report. Section
3.2.1 describes the yearly biomass, density and occupancy of the most abundant species and
timeseries are presented in Appendix E.

code species class

Abrten Abra tenuis Mollusca
Ceredu Cerastoderma edule Mollusca
Ensdir Ensis leei Mollusca
Macbal Limecola balthica Mollusca
Myaare Mya arenaria Mollusca
Perulv Peringia ulvae Mollusca
Scrpla Scrobicularia plana Mollusca
Alivir Alitta virens Polychaeta
Aphmar Aphelochaeta marioni Polychaeta
Aremar Arenicola marina Polychaeta
Capcap Capitella capitata Polychaeta
Etelon Eteone longa Polychaeta
Heddiv Hediste diversicolor Polychaeta
Het�l Heteromastus �liformis Polychaeta
Lancon Lanice conchilega Polychaeta
Marvir Marenzelleria viridis Polychaeta
Nephom Nephtys hombergii Polychaeta
Phymuc Phyllodoce mucosa Polychaeta
Polcor Polydora cornuta Polychaeta
Pygele Pygospio elegans Polychaeta
Scoarm Scoloplos armiger Polychaeta
Spimar Spio martinensis Polychaeta
Oligoc Oligochaeta sp. Oligochaeta
Batsar Bathyporeia sarsi Crustacea
Carmae Carcinus maenas Crustacea
Corosp Corophium sp. Crustacea
Uropos Urothoe poseidonis Crustacea

Table 2: Abreviated code name and scienti�c name and class of the benthos species.

3.2.1 Biomass, numeric density and occupancy per species

Cockles (Cerastoderma edule) are the most important species in terms of biomass per squared
meter followed by lugworms (Arenicola marina), sand gaper (Mya arenaria), razor clam (Ensis
leei) and baltic tellin (Limecola balthica). The yearly average biomass of cockles ranges between
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4 and 10 g m-2 and of lugworms and sand gaper between 1.5 and 3 g m-2. The numerically most
important species are mudsnails (Peringia ulvae) and the tubeworm (Pygospio elegans). In
terms of occupancy (% of sites occupied) the di�erences between species are less pronounced.

Figure 7: Average biomass (g m-2), numeric density (specimens m-2) and occupancy (%) for the 27
selected most abundant benthos species in the Dutch Wadden Sea.

Maps of yearly distributions of benthos are presented in Figs. 30 - 56 in Appendix F. The
following paragraphs highlight some general patterns that are relevant for the SDMs developed
in Section 3.4.

Molluscs The general picture that emerges from the mollusc distribution maps in Section
F.1 is that the same intertidal �at areas tend to be occupied across years but that the yearly
densities vary strongly. There are some interesting exceptions to this general pattern, however.
For instance, the density of razor clam (Ensis leei) is high on the mud�ats south of Griend
in 2009 while it is virtually absent in this area in 2010. In 2011, the density of razor clam
is exceptionally high south of Vlieland while the densities had been low in the years before.
This type of spatially variable boom-and-bust dynamics is exception rather than rule for other
bivalve species. Abra tenuis has a rather speci�c spatial distribution in that it is limited to
highly elevated areas on distinct tidal �ats like Balgzand, between Texel and Vlieland, east of
Griend and south of Rottumerplaat (Fig. 36).
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Polychaetes The spatial distributions of the di�erent polychaete species are also rather
constant in that the same areas tend to be occupied year after year (Section F.2). However,
the densities may vary strongly between years (also see Fig. 28). Lanice conchilega is somewhat
exceptional and shows a rather steep decline over the entire area between 2009 and 2012 after
which the densities increase again (Fig. 40).

Crustaceans The spatial distribution of crustaceans is also constant in that the same mud-
�ats tend to be occupied (Section F.3). There are striking di�erences between species. For
instance, Corophium sp. tend to occupy the mud�ats near the mainland shore (Fig. 53)
while Urothoe poseidonis tends to occupy the mud�ats in the vicinity of the tidal inlets (Fig.
55). The distributions are constant between years. In the following section the relationships
between the distribtution of benthos in relation to environmental variables are considered in
further detail.
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3.2.2 Occupancy environment relationships

Figure 8 shows the relationships between the occupancy of the intertidal �ats by bivalves
for the di�erent species and the environmental predictors for each year over the period 2008-
2013. The relationships are consistent through time which implies that the average densities
are systematic and robust representatives of the year-wise relationships. Figs 57 and 58 in
Appendix G show the occupancy environment relationships for polychaetes and crustaceans.
We also refer to the �gures with the yearly spatial distributions of benthos in Appendix F.
Because the relationships are systematic we can model the average density of benthos per site
as functions of the environmental variables (Section 3.4).

Figure 8: Fraction of benthos sampling sites that are occupied by molluscs against the 10 deciles of
the predictor variables.
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3.3 Multivariate analyses

The principal component analysis of the predictor variables shows that the �rst two compon-
ents describe nearly 72% of the variance in the predictor dataset (Fig. 9). The biplot in Fig. 9
shows that the �rst principal component, which describes approximately 47% of the variation,
is mainly associated with the sediment properties mgs, mud and sal. The second principal
component is mainly associated with expt, wave and shear.

Figure 9: PCA of the environmental predictor variables. The scree plot in the left panel gives the
variance against the principal components. The biplot in the right panel shows the loadings of the
variables on the �rst and second principal components.

There were eight sites where none of the 27 benthos species were present in the period 2009-
2013; these sites were not included in the correspondence analysis. The correspondence ana-
lysis of the benthos community shows the associations between the di�erent species. The
biplot in the left panel of Fig. 10 shows that while there are gradients over which the species
tend to co-occur, there are no distinct clusters of species. This observation is in line with the
distinct spatial distributions presented in Appendix F.

Constrained correspondence analysis provides insight into how variation in the benthos com-
munity may be explained by environmental variables. The biplot in the right panel of Fig.
10 shows that species like Ensis leei, Spio martinensis, Nephthys hombergii, Scoloplos armi-

ger tend to co-occur in areas with course sediment. Abra tenuis and Scrobicularia plana are
species that occur at intertidal �ats with high exposure times, i.e. at highly elevated locations.
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Figure 10: Biplots of the correspondence analysis and the constrained correspondence analysis of the
benthos community (number of specimens per meter squared) in the Wadden Sea.
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3.4 Spatial distributions and species distribution models

Species speci�c distributions of all species presented in table 2 over the period 2008-2013 are
presented in Appendix F. Here we describe the modelling results for the log-transformed
average biomass of Cerastoderma edule to illustrate the work�ow and interpretation. The
modelling results for the other species are presented in Appendix H.

Table 3 presents the prediction errors (RMSE) for the di�erent frameworks. RMSE is relatively
high across modelling frameworks for all the holdout sets which implies that none of the
models adequately captured the variability of the data. This, however, does not imply that
the environmental predictors have little e�ect on the benthos distributions.

The maps in the left panels in Fig. 11 show the observed cockle biomass (obs), the consensus
prediction (wavg) and the residuals (obs - wavg). Although the di�erences between observed
and the consensus predictions are large and the models tend to underpredict high values and
overpredict low values (see scatterplot), the models tend to capture the main spatial patterns
in the cockle distributions. The consensus SDM has �explained� variability and also reduced
the spatial autocorrelation (Fig. 11). However, substantial autocorrelation in the residual
terms remains.

holdout ncells RF GBM MARS SVM GAM CONS

1 3564 5.97 5.96 5.96 6.62 6.31 5.97
2 4644 5.62 5.63 5.68 5.74 5.80 5.54
3 2280 5.66 5.63 5.65 5.60 5.97 5.60
4 1788 5.81 5.79 5.95 6.05 5.86 5.78
5 1794 5.61 5.76 5.78 5.31 6.14 5.57
6 1524 5.43 4.73 4.89 6.82 5.81 4.73

RMSE (non-random CV) 5.71 5.65 5.70 6.02 5.99

RMSE (random CV) 5.22 5.27 5.50 5.49 5.54

Table 3: Ceredu: Transferability assessment of the best tuned models (one for each modeling frame-
work) on the basis of non-random cross validation for the six spatial subsets within the Dutch Wadden
Sea. RMSEs are given for RF, GBM, MARS, SVM, GAM predictions and for the consensus prediction
(CONS). The row RMSE (random CV) gives the average RMSE of the models that were tuned by
conventional random cross-validation.

When there is good agreement between the observed and predicted distribution patterns,
partial dependence plots may provide insight into the univariate relationships (and the causal
relationships) between the benthos density and the predictor variables. Table 4 gives the R2

values between observed and predicted values for the di�erent species. The R2 values for
Scoloplos armiger and Corophium sp. are high while the values for Carcinus maenas, Spio
martinensis, Alitta virens and Eteone longa are very low.
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Figure 11: SDM results for cockle biomass distributions. obs: observed response variable (i.e. log-
transformed mean biomass over the period 2009-2013); wavg: consensus prediction (weighted average of
the predictions of the various machine learning algorithms). The bottom-left panel maps the residuals.
The margins of the bottom-left panel represent the mean values of the residual and indicate the spatial
trend. The top-right panel shows observed biomass vs the weighted average of the predictions. The red
line represents the smooth conditional means; the black line represents the situation where wavg=obs.
The right bottom scatterplot shows Moran's I statistic of the observed variable and the residuals.
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spec All Fold01 Fold02 Fold03 Fold04 Fold05 Fold06

Scoarm 0.59 0.63 0.71 0.45 0.13 0.28 0.72
Corosp 0.46 0.55 0.47 0.19 0.10 0.08 0.82
Uropos 0.36 0.51 0.29 0.31 0.19 0.27 0.41
Heddiv 0.34 0.20 0.46 0.38 0.34 0.22 0.08
Perulv 0.33 0.06 0.37 0.39 0.31 0.23 0.13
Aphmar 0.31 0.12 0.24 0.02 0.31 0.35 0.47
Capcap 0.29 0.21 0.24 0.27 0.02 0.03 0.27
Oligoc 0.28 0.27 0.38 0.24 0.32 0.29 -0.30
Het�l 0.27 0.32 0.32 0.07 0.16 0.02 0.30
Marvir 0.26 0.10 0.21 0.20 -0.31 -0.04 -0.18
Nephom 0.24 0.16 0.24 0.31 0.15 0.23 0.30
Scrpla 0.23 0.14 0.13 0.29 0.15 0.20 -0.24
Ceredu 0.22 -0.02 0.14 0.27 0.08 0.08 0.46
Aremar 0.21 0.14 0.17 0.05 0.02 0.06 0.49
Myaare 0.19 0.09 0.24 0.21 0.02 0.16 0.17
Batsar 0.16 0.07 0.24 0.16 0.10 0.17 0.11
Phymuc 0.15 0.07 0.18 0.11 -0.08 -0.08 0.42
Polcor 0.13 -0.04 0.01 0.14 0.21 0.13 0.21
Pygele 0.11 0.08 0.16 0.06 -0.06 0.04 -1.01
Ensdir 0.10 0.07 0.01 0.14 0.04 -0.02 0.10
Lancon 0.10 0.04 0.04 0.07 0.02 0.04 0.25
Macbal 0.04 -0.24 0.04 0.03 -0.09 -0.37 -0.19
Abrten 0.04 0.14 0.03 -0.05 -0.10 0.12 -7.18
Carmae 0.03 -0.02 0.04 0.02 0.03 -0.05 -0.12
Spimar 0.03 0.02 0.03 -0.02 0.02 0.00 -0.01
Alivir 0.01 0.00 0.01 -0.01 -0.01 0.03 -0.34
Etelon -0.01 -0.26 0.06 0.04 -0.08 0.01 -0.85

Table 4: R-squared of the consensus model constructed on the basis of non-random cross validation for
the six spatial subsets within the Dutch Wadden Sea. The species are ordered by decreasing R-squared.

3.4.1 Partial dependence plots

Figures 12-15 present the predicted relationships between biomass per species and the predictor
variables by means of partial dependence plots. The points in the �gures represent the raw
data which help to interpret the predicted relationships and develop expectations when the
environmental conditions change. We consider a number of distinct bivalves, polychaetes and
crustaceans to highlight some striking relationships and to illustrate the interpretation of the
partial dependence plots.

Bivalves Cerastoderma edule The top row of panels in Fig. 12 shows that mean exposure
time (expt) is an important determinant of Cerastoderma density. Particularly, the biomass
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tends to increase between exposure time 0 and 0.6 after which it levels o�. The e�ect of waves
is monotonically negative. The e�ect of the sediment properties is remarkable in that high
biomass tends to occur at low and high values of mgs but that biomass is lower at intermediate
values. In addition, the impact of mud is negative at very low values but becomes positive at
levels greater that 10%.

Mya arenaria The biomass of Mya shows non-linear relationships with median grain size
and mud fraction and a positive linear relationship with wave forcing. Also in these cases the
models seem to be in line with each other, though GAM predicts notably lower biomasses at
high mud fractions that the other modelling frameworks.

Abra tenuis The bottom row of panels in Fig. 12 shows that mainly the mean exposure time
(expt) a�ects the biomass of Abra. The predictions of the di�erent models correspond relatively
well although the MARS model predicts lower abundances at high exposure times. Abra is
only observed at locations where exposure time is greater than 0.50. The other variables have
seemingly little impact on Abra. It should be noted, however, that the spatial range over which
Abra occurs is limited which limits the ranges of the other predictor variables. If the exposure
times at the intertidal �ats with high exposure times would decrease, the density and biomass
of Abra is expected to be reduced.

Polychaetes The polychaete species were split into two groups on the basis of the canonical
correspondence analysis (Fig. 10). The partial dependence plots of the polychaetes which
were associated with coarse sediments are presented in �gure 13 and the polychaete species
that were associated with sediments with high mud fraction are presented in �gure 14.

Arenicola marina The biomass of the lugworms tends to increase between exposure time 0
and 0.4 after which it levels o� and even decreases slightly. The impacts of shear stress, waves
and brackish water are negative.

Nephthys hombergii The biomass of Nephtys tends to decrease with increasing exposure
time. The biomass increases with wave impact and shear stress up to a level after which the
impact of shear becomes negative. Nephtys does not occur at locations salinity where the
mean salinity levels are below 20 psu.

Hediste diversicolor The biomass of Hediste tends to increase between exposure time 0 and
0.5 after which it levels o�. The impacts of shear stress and wave forcing are negative, though
not very strong.

Crustaceans The four main crustaceans and their relationships with the environmental
variables are presented in �gure 15. The relationships of all species with exposure time are
similar in that biomass tends to increase with exposure time, though the density of Urothoe
poseidonis shows a hump-shaped curve. The other relationships are more variable.

The partial dependence plots provide insight into the e�ects of the environmental variables
on the benthos species. They can be used model spatial distributions under future conditions.
It is important to note, however, that nearly all species occur over a wide range of environ-
mental conditions. This implies that drastic shifts are not expected under slightly changing
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Figure 12: Partial dependence plots for the modelled relationships between (log-transformed) biomass
of the bivalve species and predictor variables. The di�erent curves within panels represent partial
dependence plots for the di�erent modelling algorithms.

abiotic conditions on the short term. On the long term, however, changes in morphology and
hydrodynamics are expected to induce spatial redistributions of benthos.

32



3 RESULTS

Figure 13: Partial dependence plots for the modelled relationships between (log-transformed) biomass
and the predictor variables of the polychaete species that are associated with coarse sediment. The
di�erent curves within panels represent partial dependence plots for the di�erent modelling algorithms.
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Figure 14: Partial dependence plots for the modelled relationships between (log-transformed) biomass
of the polychaete species that are associated with �ne sediment and the predictor variables. The
di�erent curves within panels represent partial dependence plots for the di�erent modelling algorithms.

Figure 15: Partial dependence plots for the modelled relationships between (log-transformed) biomass
of the crustacean species and predictor variables. The di�erent curves within panels represent partial
dependence plots for the di�erent modelling algorithms.
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3.5 Benthos biomass - productivity relationships

Figure 4b shows that the average chlorophyll-a concentrations and their trends di�er signi�c-
antly within the Dutch Wadden Sea. Particularly, chlorophyll-a concentrations are relatively
high and constant in the tidal basins Borndiep, Zoutkamperlaag and Lauwers while they are
decreasing in the western tidal basins and in the Eems-Dollard region. Figure 16 presents the
average biomass per tidal basin for the years 2008-2013 for four bivalve species (Cerastoderma
edule, Mya arenaria, Limecola balthica, Peringia ulvae) with relatively high average biomasses
and relatively consistent distributions1. In the areas with high chlorophyll-a concentrations
the average biomass of cockles, Baltic tellins and periwinkles also are relatively high, though
variable between years (Fig. 16). It is possible that the tidal basins with relatively high
chlorophyll-a concentrations are systematically di�erent in terms of one or more physical pre-
dictors. Therefore, the analysis below considers the relationship between the residual biomass
(i.e. obs - wavg) and chlorophyll-a concentration.

Figure 16: Average biomass and standard error of a number of selected benthos species for the years
2008-2013 in the tidal basins of the Dutch Wadden Sea.

Figure 17 and Table 5 show that there are positive associations between chlorophyll-a concen-
trations and the biomass residuals of cockles, Baltic tellins and periwinkles. The regression
coe�cient for the e�ect of chlorophyll-a on the residual biomass of Mya arenaria is negative.
It is important to note that the analyses are incomplete in that spatial autocorrelation in

1Species with temporally variable distributions are unlikely to show systematic relationships with chlorophyll-a
concentrations (because chlorophyll-a concentrations show less variable dynamics).
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Figure 17: Relationships between chlorophyll-a concentrations and residual biomass of the four selected
bivalve species. The coloured lines show the relationships within tidal basins and the black lines show
the relationships across all data .

the regression errors is not accounted for which leads underestimation of the standard errors.
Furthermore, it should be noted that the explanatory power of the e�ect of chlorophyll-a
concentration is extremely low which is due to the high variability in the residual biomass.

Figure 17 also shows linear regression lines for within tidal basin relationships. Obviously, the
ranges of chlorophyll-a concentrations are much lower that the range across the tidal basins.
Systematic within tidal basin relationships do not show up.

3.6 Impacts of changing environmental conditions on shorebirds

In this section we consider the impact of changing environmental conditions on the abund-
ance and distribution of a number of shorebirds. Particularly, based on the notion that the
environmental conditions a�ect shorebird densities via the densities of benthos, we interpret
the partial dependence plots in �gures 12 - 15. We focus on the most prominent relationships
of the most important prey species.

Red knot

� Limecola balthica: There is a positive relationship between the biomass of Limecola and
exposure time. If relative sea level rise is positive, the exposure time is expected to
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Table 5: Regression table for the models estimating the e�ects of chlorophyll-a concentration on the
residuals of benthos biomass for a selection of bivalve species.

Ceredu Myaare Macbal Perulv

Constant −1.452∗∗∗ 2.552∗∗∗ −4.350∗∗∗ −0.302
(0.319) (0.488) (0.266) (0.205)

CHLA 0.101∗∗∗ −0.161∗∗∗ 0.342∗∗∗ 0.033∗

(0.026) (0.040) (0.022) (0.017)
Observations 2,599 2,599 2,599 2,599
R2 0.006 0.006 0.086 0.001
Adjusted R2 0.005 0.006 0.086 0.001
Residual Std. Error (df = 2597) 5.587 8.564 4.658 3.587
F Statistic (df = 1; 2597) 14.842∗∗∗ 16.093∗∗∗ 245.202∗∗∗ 3.774∗

Notes:
∗∗∗Signi�cant at the 1 percent level.
∗∗Signi�cant at the 5 percent level.
∗Signi�cant at the 10 percent level.

decrease which would lead to decrease of Limecola and thus Red knots. On the other
hand, if sedimentation rates are high enough to compensate or overcompensate then
Limecola is expected to maintain its levels or even increase, ceteris paribus. There is
a clear negative relationship between the biomass of Limecola and wave forcing which
implies that if wave forcing increases the biomass of Limecola and the foraging conditions
for red knots would deteriorate.

� Cerastoderma edule: As noted above, there is a positive relationship between mean ex-
posure time (expt) and cockle biomass. If the the highly elevated and exposed intertidal
�ats would sink and become less exposed, this would lead to a reduction in the bio-
mass of cockles. On the other hand, if the area of highly elevated intertidal �ats would
increase, an increase in cockle abundance may be expected which would improve the
foraging conditions for red knots. If the median grain size distribution would become
more uniform (i.e. the extremes would be reduced) the biomass is expected to decrease.

� Peringia ulvae: There is a positive relationship between the biomass of Peringia and
exposure time which implies that if the area of highly elevated intertidal �ats would
be reduced the density of Peringia and the foraging conditions for red knots would
be reduced. If the mud fraction of the highly elevated intertidal were to be reduced
Peringia would likely decrease in biomass. Note that this �nding corresponds with the
knowledge that Peringia forages on diatoms which tend to occur in high densities on
mudy sediments.

The three main prey species of red knot show similar strong responses to changing exposure
time. Therefore, if the total area of high and exposed �ats were to be reduced all the important
prey species of red knot are expected to decline.

Oystercatcher

� Cerastoderma edule and Limecola balthica are important prey species; they are discussed
above.
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� Ensis leei: The relationship with shear stress is initially positive but levels o� at values
greater than 0.5 Nm−2. There is also a positive impact of mgs on the biomass of Ensis.
Thus, Ensis is expected to bene�t from a more dynamic system with course sediment.

� Hediste diversicolor: As noted above, the biomass of Hediste increases between exposure
time 0 and 0.5 after which it levels o�. The impacts of shear stress and wave forcing are
negative, though not very strong.

The oystercatcher's main prey items (Cerastoderma, Limecola and Hediste) will decrease if
the exposure time decreases. If the areas with relatively high shear stress expand, the biomass
of Hediste diversicolor will be reduced while Ensis leei might increase. The impact of these
environmental changes may lead to a di�erent diet composition of oystercatchers.

Bar-tailed godwit

� Arenicola marina: The relationship with exposure time (expt) is hump-shaped. The
impacts of shear stress and and wave forcing are mainly negative.

� Hediste diversicolor: As noted above, the biomass of Hediste increases between exposure
time 0 and 0.5 after which it levels o�. The impacts of shear stress and wave forcing are
negative, though not very strong.

� Scoloplos armiger and Nephtys hombergii: The responses of Scoloplos and Nephtys are
similar and therefore considered simultaneously. The impact of exposure time is slightly
negative. The e�ect of shear is initially positive after which it levels o�. The e�ect
of increasing waves and median grain size are positive. The density and biomass of
Nephthys is expected to increase if disturbance by currents and waves increase.

� Lanice conchilega: Lanice occurs over a wide range of exposure time conditions though
there is a slight negative e�ect when exposure time the levels exceed 0.5. There is a clear
positive relationship with mgs.

� Limecola balthica: As noted above there is a positive relationship between the biomass of
Limecola and exposure time. There is a clear negative relationship between the biomass
of Limecola and wave forcing which implies that if wave forcing increases the biomass of
Limecola would decrease.

� Carcinus maenas: The relationship with exposure time is positive while the relationship
with wave impact is negative. The abundance and biomass of Carcinus is expected
to decrease if the available mud�ats with high exposure times are reduced and if wave
forcing increases.

The main prey items of bar-tailed godwits (Arenicola, Hediste) are expected to decrease when
exposure time decreases and when shear and wave forcing increase. However, alternative prey
species such as Scoloplos and Nephtys are expected to increase if the area of intertidal �ats
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with low exposure times, high wave forcing and coarse sediments increase. Overall, the broad
diet and the diverging responses of the benthos prey to changing conditions suggests that the
bar-tailed godwit will continue to have ample foraging possibilities under changing physical
conditions.
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4 Discussion

Models capturing the dependencies between the density and distribution of organisms and the
abiotic environment are a prerequisite to assess ecological impacts of changes in the abiotic
environment. In this report we developed species distribution models to be able to forecast
possible shifts in the abundance and distribution of intertidal benthos in response to future
RSLR and sediment nourishments. To guard against over�tting, the models were tuned on
the basis of transferability performance. We developed habitat suitability maps by combining
the predictions from �ve SDMs and we constructed partial dependence plots to assess the
response of benthos to changing physical variables univariately. On the basis of the possible
shifts in abiotic conditions and benthos distributions we considered the possible consequences
for shorebirds foraging on benthos.

The abundance of benthos in terms of biomass, number of specimens and occupancy varies
widely between years and over a broad range of environmental conditions. However, as far
as was analysed, the relationships between occupancy and the environmental variables were
relatively constant between years for most species. This �nding justi�ed the use of the aver-
age biomass per sampling site to analyse the relationships with the environmental variables.
Though averaging across years smoothed the data to a certain extent, they remained zero-
in�ated. This was one of the motivations for using machine learning algorithms to develop
SDMs.

Overall, the SDMs captured the main distribution patterns of the benthos species although
they tended to over�t low biomass observations and under�t high biomass observations. Zero-
in�ation is a common phenomenon, especially across long environmental gradients. The reason
is that under unfavourable conditions a species may be absent while favourable conditions
promote growth and the development of high densities of organisms. Despite this shortcoming
the SDMs were used to assess the response of benthos biomass to possible changes in physical
variables by means of partial dependence plots.

The partial dependence plots show that exposure time (expt) is crucial to many molluscs
(mainly Cerastoderma edule, Limecola balthica, Peringia ulvae, Abra tenuis), polychaetes
(mainly Arenicola marina, Lanice conchilega, Marenzelleria viridis, Hediste diversicolor, Het-
eromastus �liformis) and crustaceans (mainly Corophium sp.). Furthermore, changes in shear
stress are expected to have strong in�uence on Ensis leei, Scrobicularia plana, Arenicola mar-

ina, Scoloplos armiger, Nephthys hombergii and Hediste diversicolor. Waves are expected to
have strong in�uence on Cerastoderma edule, Limecola balthica, Arenicola marina, Scoloplos

armiger, Marenzelleria viridis, Heteromastus �liformis and Aphelochaeta marioni. Finally,
the variables mgs and mud are expected to a�ect the distribution and density of amongst
others Cerastoderma edule, Ensis leei, Peringia ulvae, Arenicola marina, Scoloplos armiger,

Marenzelleria viridis, Capitella capitata and Phyllodoce mucosa.

We also considered the impact of changing abiotic conditions on the benthic prey of red
knot (Calidris canutus), oystercatcher (Haematopus ostralegus) and bar-tailed godwit (Limosa
lapponica). The three main prey species of red knot (i.e. Limecola balthica, Cerastoderma edule
and Peringia ulvae) show similar responses to changing exposure time. Hence, if the total
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area of elevated and exposed �ats were to be reduced, the important prey species of red knot
are expected to decline. The oystercatcher's main prey items (Cerastoderma, Limecola and
Hediste) will decrease if exposure time decreases. If the areas with relatively high shear stress
expand, the biomass of Hediste will be reduced while Ensis might increase. If environmental
change would cause benthos distributions to shift, oystercatchers might be able to anticipate
by changing the composition of their diet. It should be noted that the blue mussel (Mytilus

edulis) is an important prey species for oystercatchers but is not considered in this report
because mussels are not adequately captured in the SIBES monitoring program. The main
prey items of bar-tailed godwits (Arenicola, Hediste) are expected to decrease when exposure
time decreases and when shear stress and wave forcing increase. However, alternative prey
species such as Scoloplos and Nephtys are expected to increase if there is an increase in the area
of intertidal �ats with low exposure times, high wave forcing and coarse sediments. Overall,
the broad diet and the diverging responses of the benthos prey suggests that bar-tailed godwits
will maintain foraging possibilities under changing physical conditions. It is important to note,
however, that if changes in the physical drivers are substantial and the benthos community
shifts accordingly, shorebirds will require time to respond to changing species compositions
and distributions. The systematic changes in benthos should be considered in the perspective
of a benthos community that is already highly dynamic, also without systematic changes in
the morphodynamic drivers.

4.1 Suggestions for further research

This section describes research that can help to provide more accurate insight into future
development of benthos and shorebird communities in response to changing environmental
conditions. Suggestions 1-3 require substantial research projects including morphodynamic
modelling, ecosystem models and shorebird data and foraging models; suggestions 4-6 are
relatively easy to carry out.

1. The �nding that most benthos species occur over broad ranges of environmental condi-
tions and that the temporal variabilities are relatively large suggests that the benthos
communities are relatively irrepressible to moderate changes in the environmental vari-
ables on short timescales. However, the dependence relationships suggest that if there
are signi�cant and permanent changes in the abiotic variables, changes in the benthos
community are to be expected in the long run. The variability of the benthos densities
under relatively constant abiotic conditions (i.e. the conditions considered in this report)
suggests that it will take long time and many observations to detect systematic shifts in
benthos distributions related to changes in the physical variables. Models simulating the
physical environment may provide more detailed insight into possible future scenario's.
On the basis of such scenario's more detailed prognoses about the benthos and shore-
bird communities can be developed which can be used to support decision making with
regards to sediment nourishments in a more tangible manner. An advantage of using a
realistic scenario approach is that the impact of changing abiotic variables can be mod-
elled simultaneously instead of considering univariate relationships in isolation. Speci�c
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scenario's can also be helpful to assess regional di�erences in the change of foraging
conditions and bird distributions. The constrained correspondence analysis in Section
3.3 suggests that to model shifts in the entire benthos community all physical predictor
variables would need to be modelled.

2. Our SDMs performed reasonably well for a large number of species in that they captured
the main benthos distribution patterns. However, the SDMs incorporate uncertainties
and they are static and incomplete. For instance, possible data errors in the bathy-
metry will cause errors in the modelled hydrodynamics which a�ects the SDMs. More
importantly our SDMs do not incorporate ecological interactions such as consumption,
predation, diseases and facilitation. We have tried to investigate the role of primary
production on benthos density by correlating pelagic chlorophyll-a concentrations to the
residual biomass of four important benthos species. Even though we found plausible
correlations between the residuals of the biomass of Cerastoderma and Limecola and
chlorophyll-a concentrations, the correlations did not account for much of the unex-
plained variation. One important reason is that chlorophyll-a concentrations are only
measured at a small number of stations located in subtidal areas. We linked the re-
sidual biomasses to chlorophyll-a concentrations using a weighted (by inverse distance
squared) average of measurements at the stations. This crude approach ignores micro-
phytobenthos as food resources for benthos (except for possible resuspension of micro-
phytobenthos) and local processes related to the production and consumption of phyto-
plankton. Future analyses may bene�t from data obtained by means of remote sensing
or from ecosystem models where phytoplankton and microphytobenthos production and
consumption are modelled in a realistic manner. This would also open possibilities to
model growth of benthos dynamically.

3. We assessed the e�ect of changing abiotic conditions on shorebirds via benthos in a crude
qualitative manner; i.e. we merely considered the changes in (known) benthic prey qual-
itatively. A more adequate and quantitative way would involve statistical testing of the
relationships between the spatial distributions of shorebirds and benthos. For instance,
there are data available resulting from high tide roost counts that can be used for such
analyses (e.g. Blew & Südbeck, 2005; van der Hut et al., 2014). This method requires
that the number of birds at high tide roost re�ect the local foraging opportunities. More
elaborate ways would involve simulation and measurement of foraging behaviour (by
means of tagging and following individual birds) in response to "resource landscapes"
and possibly "intake rate landscapes" and the depletion of resources. Furthermore, an-
imals are known to be able to shift their diet when there is a shift in the abundance of
potential prey. Which shifts are likely to occur under future conditions is an important
research question.

4. One practical modelling di�culty concerns zero-in�ation. Particularly, histograms of
biomass (or number of individuals) of individual species showed asymmetric distribu-
tions. This is a common phenomenon because data sampled along a long environmental
gradient contain many zero values because species generally have unimodal distributions
along environmental gradients and are absent from sites that are far from their optimal
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living conditions. This di�culty might be overcome to some extent by aggregating the
data on a coarser spatial scale. Another bene�t of aggregating observations is that the
data set is reduced which speeds up model tuning.

5. A complete assessment of the impact of changing environmental conditions on benthos
and bird communities in the Wadden Sea should ideally include blue mussels (Mytilus

edulis) and Paci�c oysters (Crasostrea gigas). These species are important in terms of
biomass and - especially blue mussels - is an important prey species for oystercatchers.
These reef-forming species are not adequately assessed in the SIBES monitoring program.
But, yearly monitoring of mussel beds is carried out by Wageningen Marine Research
(WMR); we recommend to extend the current research by including SDMs for these
species.

6. We found that the average median grain size increased by 0.89 µm per year and that the
average mud fraction of the tidal �ats had reduced with an average of 0.24% per year
over the period 2009-2015. The trends are largely due to changes in 2014 and 2015. From
a RSLR and sediment nourishments management point of view it would be interesting
to have more detailed insight into the causes underlying the changes.
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A DEPTH AND EXPOSURE TIME

A Depth and exposure time

Depth measurements are done part by part in the Dutch Wadden Sea and completion of a
cycle takes 6 years. Because there are continuous morphological changes, the bathymetry data
that are used for hydrodynamic modelling might not accurately represent the actual depths
at the moment of benthos sampling. An potential improvement could be to make use of
the measurements with a time stamp (�vaklodingen�) instead of the bathymetry (which is a
construction of measurements over a time span of 6 years) of the entire Wadden Sea. Since the
distribution of benthos is a�ected by inundation time rather than actual depth it is important
to know the relationship between depth and inundation time before depth can be used as a
�substitute�. The scatterplot in Fig. 18 shows the relationship between depth and inundation
time. The correlation between the two variables is too low to justify the use of depth as a
predictor variable instead of inundation time.

Figure 18: Scatterplot of depth (m) against exposure time (fraction).
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B WAVE DYNAMICS

B Wave dynamics

Figure 19: Correlation between the yearly medians of wave forcing on the SIBES benthos sampling
locations for the period 2006-2013.

Figure 20: Correlation between the yearly 95th percentiles of wave forcing on the SIBES benthos
sampling locations for the period 2006-2013.
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C SEDIMENT DYNAMICS

C Sediment dynamics

Figure 21: Yearly maps of the median grain size and mud fraction of the intertidal �ats in the Wadden
Sea for the period 2009 - 2014.
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C SEDIMENT DYNAMICS

Figure 22: Empirical cumulative distributions of the yearly mud fraction and median grain size distri-
butions per tidal basin for the period 2009 - 2015.
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C SEDIMENT DYNAMICS

Figure 23: Boxplots of the mud fraction and median grain size distributions per tidal basin for the
period 2009 - 2015.
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D BENTHOS IMPUTATION

D Benthos imputation

Figure 24: The number of individuals that were incinerated and the number of missing data per
species. The reason for the large number of missing biomass data is that small polychaetes (which
may be numerically abundant) are not longer incinerated since 2012/2013 because the biomass of the
small polychaetes are relatively constant.
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D BENTHOS IMPUTATION

Figure 25: Imputation results for bivalves. Scatterplot of length against the cubic root of AFDM. The
di�erent colours denote the original data and the regression lines (Imp = 0) and the imputed values
and regression lines on the basis of the imputed data (Imp 1-5).

Figure 26: Imputation results for polychaetes. Density distributions of original (Imp=0) and imputed
(Imp=1-5) data for the polychaetes.

54



E BENTHOS TIME SERIES BY TIDAL BASIN

E Benthos time series by tidal basin

Figures 27, 28, 29 show the average benthos densities per tidal basin for the entire Dutch
Wadden Sea for the period 2008-2013.

Figure 27: Average yearly mollusc densities for the period 2008-2013 per tidal basin.
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E BENTHOS TIME SERIES BY TIDAL BASIN

Figure 28: Average polychaete and oligochaete densities in the period 2008-2013 per tidal basin.
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E BENTHOS TIME SERIES BY TIDAL BASIN

Figure 29: Average densities of crustaceans in the period 2008-2013 per tidal basin.
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F BENTHOS MAPS

F Benthos maps

F.1 Molluscs (bivalves & gastropods)

Figure 30: Spatial distributions of Cerastoderma edule between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 31: Spatial distributions of Mya arenaria between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 32: Spatial distributions of Ensis leei between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 33: Spatial distributions of Limecola balthica between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 34: Spatial distributions of Peringia ulvae between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 35: Spatial distributions of Scrobicularia plana between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 36: Spatial distributions of Abra tenuis between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

F.2 Polychaetes

Figure 42: Spatial distributions of Pygospio elegans between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 37: Spatial distributions of Arenicola marina between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 38: Spatial distributions of Scoloplos armiger between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 39: Spatial distributions of Hediste diversicolor between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 40: Spatial distributions of Lanice conchilega between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 41: Spatial distributions of Marenzelleria viridis between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 43: Spatial distributions of Nephtys hombergii between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 44: Spatial distributions of Alitta virens between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 45: Spatial distributions of Capitella capitata between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 46: Spatial distributions of Heteromastus �liformis between 2008 and 2013 in the DutchWadden
Sea.
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F BENTHOS MAPS

Figure 47: Spatial distributions of Aphelochaeta marioni between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 48: Spatial distributions of Oligochaeta sp between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 49: Spatial distributions of Eteone longa between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 50: Spatial distributions of Phyllodoce mucosa between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 51: Spatial distributions of Polydora cornuta between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 52: Spatial distributions of Spio martinensis between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

F.3 Crustaceans

Figure 53: Spatial distributions of Corophium sp. between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 54: Spatial distributions of Carcinus maenas between 2008 and 2013 in the Dutch Wadden Sea.
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F BENTHOS MAPS

Figure 55: Spatial distributions of Urothoe poseidonis between 2008 and 2013 in the Dutch Wadden
Sea.
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F BENTHOS MAPS

Figure 56: Spatial distributions of Bathyporeia sarsi between 2008 and 2013 in the Dutch Wadden
Sea.
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G OCCUPANCY ENVIRONMENT RELATIONSHIPS

G Occupancy environment relationships

(a) Polychaete species 1-8

Figure 57: Fraction of benthos sampling sites that are occupied by polychaetes and oligochaetes against
the 10 deciles of the predictor variables.
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G OCCUPANCY ENVIRONMENT RELATIONSHIPS

(b) Polychaeta species 9-16

Figure 57: Fraction of benthos sampling sites that are occupied by polychaetes and oligochaetes against
the 10 deciles of the predictor variables.
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G OCCUPANCY ENVIRONMENT RELATIONSHIPS

Figure 58: Fraction of benthos sampling sites that are occupied by polychaetes and oligochaetes against
the 10 deciles of the predictor variables.
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H SPECIES DISTRIBUTION MODELS

H Species Distribution Models

This appendix presents the outcomes of the SDMs for the 27 benthos species.
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H SPECIES DISTRIBUTION MODELS

H.1 SDM maps and spatial autocorrelation - Molluscs

Figure 59: SDM results for biomass distributions of Cerastoderma edule. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 60: SDM results for biomass distributions of Mya arenaria. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

Figure 61: SDM results for biomass distributions of Ensis leei. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

Figure 62: SDM results for biomass distributions of Limecola balthica. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 63: SDM results for biomass distributions of Peringia ulvae. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

Figure 64: SDM results for biomass distributions of Scrobicularia plana. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 65: SDM results for biomass distributions of Abra tenuis. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

H.2 SDM maps and spatial autocorrelation - Polychaetes

Figure 66: SDM results for biomass distributions of Arenicola marina. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 67: SDM results for biomass distributions of Scoloplos armiger. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 68: SDM results for biomass distributions of Lanice conchilega. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 69: SDM results for biomass distributions of Marenzelleria viridis. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 70: SDM results for biomass distributions of Pygospio elegans. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 71: SDM results for biomass distributions of Nephthys hombergii. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 72: SDM results for biomass distributions of Alitta virens. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

Figure 73: SDM results for biomass distributions of Capitella capitata. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 74: SDM results for biomass distributions of Heteromastus �liformis. See caption in Figure 11
for further information.
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H SPECIES DISTRIBUTION MODELS

Figure 75: SDM results for biomass distributions of Aphelochaeta marioni. See caption in Figure 11
for further information.
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H SPECIES DISTRIBUTION MODELS

Figure 76: SDM results for biomass distributions of Oligochaeta sp.. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 77: SDM results for biomass distributions of Eteone longa. See caption in Figure 11 for further
information.
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H SPECIES DISTRIBUTION MODELS

Figure 78: SDM results for biomass distributions of Phylodoce mucosa. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 79: SDM results for biomass distributions of Polydora cornuta. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 80: SDM results for biomass distributions of Spio martinensis. See caption in Figure 11 for
further information.

110



H SPECIES DISTRIBUTION MODELS

H.3 SDM maps and spatial autocorrelation - Crustaceans

Figure 81: SDM results for biomass distributions of Corophium sp.. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 82: SDM results for biomass distributions of Carcinus maenas. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 83: SDM results for biomass distributions of Urothoe poseidonis. See caption in Figure 11 for
further information.
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H SPECIES DISTRIBUTION MODELS

Figure 84: SDM results for biomass distributions of Bathyporeia sarsi. See caption in Figure 11 for
further information.
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